Palmprint Recognition by Applying Wavelet Subband Representation and Kernel PCA
نویسندگان
چکیده
This paper presents a novel Daubechies-based kernel Principal Component Analysis (PCA) method by integrating the Daubechies wavelet representation of palm images and the kernel PCA method for palmprint recognition. The palmprint is first transformed into the wavelet domain to decompose palm images and the lowest resolution subband coefficients are chosen for palm representation. The kernel PCA method is then applied to extract non-linear features from the subband coefficients. Finally, weighted Euclidean linear distance based NN classifier and support vector machine (SVM) are comparatively performed for similarity measurement. Experimental results on PolyU Palmprint Databases demonstrate that the proposed approach achieves highly competitive performance with respect to the published palmprint recognition approaches.
منابع مشابه
A Novel Approach for Automatic Palmprint Recognition
In this paper, we propose an efficient palmprint recognition scheme which has two features: 1) representation of palm images by two dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalized classification method based on Kernel Principal Component Analysis (Kernel PCA). Wavelet subband coefficients can effectively capture substantial palm features while keepin...
متن کاملAn automated palmprint recognition system
Recently, biometric palmprint has received wide attention from researchers. It is well-known for several advantages such as stable line features, low-resolution imaging, low-cost capturing device, and user-friendly. In this paper, an automated scanner-based palmprint recognition system is proposed. The system automatically captures and aligns the palmprint images for further processing. Several...
متن کاملKernel Fisher discriminant analysis of Gabor features for online palmprint verification
We propose an online palmprint identification and verification algorithm with the use of kernel Fisher discriminant analysis (KFD) on the Gabor wavelet representation of palm images. Desirable palm features are derived by Gabor wavelets on the palm region. The KFD method is then employed to extract higher order relations among the Gabor-palm images for palmprint recognition. As a real-world app...
متن کاملDual-tree Complex Wavelet Transform based Local Binary Pattern Weighted Histogram Method for Palmprint Recognition
In the paper, we improve the Local Binary Pattern Histogram (LBPH) approach and combine it with Dual-Tree Complex Wavelet Transform (DT-CWT) to propose a Dual-Tree Complex Wavelet Transform based Local Binary Pattern Weighted Histogram (DT-CWT based LBPWH) method for palmprint representation and recognition. The approximate shift invariant property of the DT-CWT and its good directional selecti...
متن کاملPalmprint Recognition Using Deep Scattering Convolutional Network
Palmprint recognition has drawn a lot of attention during the recent years. Many algorithms have been proposed for palmprint recognition in the past, majority of them being based on features extracted from the transform domain. Many of these transform domain features are not translation or rotation invariant, and therefore a great deal of preprocessing is needed to align the images. In this pap...
متن کامل